Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Catalysts ; 12(9):1047, 2022.
Article in English | MDPI | ID: covidwho-2032858

ABSTRACT

Photocatalysis, a unique process that occurs in the presence of light radiation, can potentially be utilized to control environmental pollution, and improve the health of society. Photocatalytic removal, or disinfection, of chemical and biological species has been known for decades;however, its extension to indoor environments in public places has always been challenging. Many efforts have been made in this direction in the last two–three years since the COVID-19 pandemic started. Furthermore, the development of efficient photocatalytic nanomaterials through modifications to improve their photoactivity under ambient conditions for fighting with such a pandemic situation is a high research priority. In recent years, several metal oxides-based nano-photocatalysts have been designed to work efficiently in outdoor and indoor environments for the photocatalytic disinfection of biological species. The present review briefly discusses the advances made in the last two to three years for photocatalytic viral and bacterial disinfections. Moreover, emphasis has been given to the tailoring of such nano-photocatalysts in disinfecting surfaces, air, and water to stop viral/bacterial infection in the indoor environment. The role of such nano-photocatalysts in the photocatalytic disinfection of COVID-19 has also been highlighted with their future applicability in controlling such pandemics.

2.
J Mol Struct ; 1237: 130366, 2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1157621

ABSTRACT

Fragment based drug discovery (FBDD) by the aid of different modelling techniques have been emerged as a key drug discovery tool in the area of pharmaceutical science and technology. The merits of employing these methods, in place of other conventional molecular modelling techniques, endorsed clear detection of the possible structural fragments present in diverse set of investigated compounds and can create alternate possibilities of lead optimization in drug discovery. In this work, two fragment identification tools namely SARpy and Laplacian-corrected Bayesian analysis were used for previous SARS-CoV PLpro and 3CLpro inhibitors. A robust and predictive SARpy based fragments identification was performed which have been validated further by Laplacian-corrected Bayesian model. These comprehensive approaches have advantages since fragments are straight forward to interpret. Moreover, distinguishing the key molecular features (with respect to ECFP_6 fingerprint) revealed good or bad influences for the SARS-CoV protease inhibitory activities. Furthermore, the identified fragments could be implemented in the medicinal chemistry endeavors of COVID-19 drug discovery.

3.
Mol Divers ; 26(1): 215-228, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1118253

ABSTRACT

Novel coronavirus disease 2019 (COVID-19) emerges as a serious threat to public health globally. The rapid spreading of COVID-19, caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), proclaimed the multitude of applied research needed not only to save the human health but also for the environmental safety. As per the recent World Health Organization reports, the novel corona virus may never be wiped out completely from the world. In this connection, the inhibitors already designed against different targets of previous human coronavirus (HCoV) infections will be a great starting point for further optimization. Pinpointing biochemical events censorious to the HCoV lifecycle has provided two proteases: a papain-like protease (PLpro) and a 3C-like protease (3CLpro) enzyme essential for viral replication. In this study, naphthyl derivatives inhibiting PLpro enzyme were subjected to robust molecular modelling approaches to understand different structural fingerprints important for the inhibition. Here, we cover two main aspects such as (a) exploration of naphthyl derivatives by classification QSAR analyses to find important fingerprints that module the SARS-CoV PLpro inhibition and (b) implications of naphthyl derivatives against SARS-CoV-2 PLpro enzyme through detailed ligand-receptor interaction analysis. The modelling insights will help in the speedy design of potent broad spectrum PLpro inhibitors against infectious SARS-CoV and SARS-CoV-2 in the future.


Subject(s)
COVID-19 Drug Treatment , Severe acute respiratory syndrome-related coronavirus , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Discovery , Humans , Papain , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
4.
Bioorg Med Chem ; 29: 115860, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-1060269

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) brutally perils physical and mental health worldwide. Unavailability of effective anti-viral drug rendering global threat of COVID-19 caused by SARS-CoV-2. In this scenario, viral protease enzymes are crucial targets for drug discovery. This extensive study meticulously focused on two viral proteases such as main protease (Mpro) and papain-like protease (PLpro), those are essential for viral replication. This review provides a detail overview of the targets (Mpro and PLpro) from a structural and medicinal chemistry point of view, together with recently reported protease inhibitors. An insight into the challenges in the development of effective as well as drug like protease inhibitors is discussed. Peptidomimetic and/or covalent coronavirus protease inhibitors possessed potent and selective active site inhibition but compromised in pharmacokinetic parameters to be a drug/drug like molecule. Lead optimization of non-peptidomimetic and/or low molecular weight compounds may be a better option for oral delivery. A masterly combination of adequate pharmacokinetic properties with coronavirus protease activity as well as selectivity will provide potential drug candidates in future. This study is a part of our endeavors which surely dictates medicinal chemistry efforts to discover effective anti-viral agent for this devastating disease.


Subject(s)
Antiviral Agents/metabolism , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/metabolism , Drug Discovery , Antiviral Agents/chemistry , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/chemistry , Drug Evaluation, Preclinical , Molecular Docking Simulation , Molecular Structure , Protein Binding , Quantitative Structure-Activity Relationship , SARS-CoV-2/enzymology
5.
J Mol Struct ; 1224: 129026, 2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-694038

ABSTRACT

As the world struggles against current global pandemic of novel coronavirus disease (COVID-19), it is challenging to trigger drug discovery efforts to search broad-spectrum antiviral agents. Thus, there is a need of strong and sustainable global collaborative works especially in terms of new and existing data analysis and sharing which will join the dots of knowledge gap. Our present chemical-informatics based data analysis approach is an attempt of application of previous activity data of SARS-CoV main protease (Mpro) inhibitors to accelerate the search of present SARS-CoV-2 Mpro inhibitors. The study design was composed of three major aspects: (1) classification QSAR based data mining of diverse SARS-CoV Mpro inhibitors, (2) identification of favourable and/or unfavourable molecular features/fingerprints/substructures regulating the Mpro inhibitory properties, (3) data mining based prediction to validate recently reported virtual hits from natural origin against SARS-CoV-2 Mpro enzyme. Our Structural and physico-chemical interpretation (SPCI) analysis suggested that heterocyclic nucleus like diazole, furan and pyridine have clear positive contribution while, thiophen, thiazole and pyrimidine may exhibit negative contribution to the SARS-CoV Mpro inhibition. Several Monte Carlo optimization based QSAR models were developed and the best model was used for screening of some natural product hits from recent publications. The resulted active molecules were analysed further from the aspects of fragment analysis. This approach set a stage for fragment exploration and QSAR based screening of active molecules against putative SARS-CoV-2 Mpro enzyme. We believe the future in vitro and in vivo studies would provide more perspectives for anti-SARS-CoV-2 agents.

6.
J Biomol Struct Dyn ; 39(13): 4764-4773, 2021 08.
Article in English | MEDLINE | ID: covidwho-610643

ABSTRACT

World Health Organization characterized novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) as world pandemic. This infection has been spreading alarmingly by causing huge social and economic disruption. In order to response quickly, the inhibitors already designed against different targets of previous human coronavirus infections will be a great starting point for anti-SARS-CoV-2 inhibitors. In this study, our approach integrates different ligand based drug design strategies of some in-house chemicals. The study design was composed of some major aspects: (a) classification QSAR based data mining of diverse SARS-CoV papain-like protease (PLpro) inhibitors, (b) QSAR based virtual screening (VS) to identify in-house molecules that could be effective against putative target SARS-CoV PLpro and (c) finally validation of hits through receptor-ligand interaction analysis. This approach could be used to aid in the process of COVID-19 drug discovery. It will introduce key concepts, set the stage for QSAR based screening of active molecules against putative SARS-CoV-2 PLpro enzyme. Moreover, the QSAR models reported here would be of further use to screen large database. This study will assume that the reader is approaching the field of QSAR and molecular docking based drug discovery against SARS-CoV-2 PLpro with little prior knowledge.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Protease Inhibitors , Drug Discovery , Humans , Informatics , Molecular Docking Simulation , Papain , Peptide Hydrolases , Protease Inhibitors/pharmacology , Quantitative Structure-Activity Relationship , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL